Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.601
1.
Vasc Health Risk Manag ; 20: 215-229, 2024.
Article En | MEDLINE | ID: mdl-38745849

Psoriasis, a prevalent chronic inflammatory skin disorder affecting 2-3% of the global population, has transcended its dermatological confines, revealing a profound association with cardiovascular diseases (CVD). This comprehensive review explores the intricate interplay between psoriasis and cardiovascular system, delving into genetic links, immune pathways, and adipose tissue dysfunction beyond conventional CVD risk factors. The pathophysiological connections unveil unique signatures, distinct from other inflammatory skin conditions, in particular psoriasis-specific genetic polymorphisms in IL-23 and TNF-α have consistently been linked to CVD. The review navigates the complex landscape of psoriasis treatments, addressing challenges and future directions in particular relevance to CVDs in psoriasis. Therapeutic interventions, including TNF inhibitors (TNFi), present promise in reducing cardiovascular risks, and methotrexate could constitute a favourable choice. Conversely, the relationship between IL-12/23 inhibitors and cardiovascular risk remains uncertain, while recent evidence indicates that Janus kinase inhibitors may not carry CVD risks. Emerging evidence supports the safety and efficacy of IL-17 and IL-23 inhibitors in patients with CVDs, hinting at evolving therapeutic paradigms. Lifestyle modifications, statins, and emerging therapies offer preventive strategies. Dedicated screening guidelines for CVD risk assessment in psoriasis are however lacking. Further, the impact of different disease phenotypes and treatment hierarchies in cardiovascular outcomes remains elusive, demanding ongoing research at the intersection of dermatology, rheumatology, and cardiology. In conclusion, unraveling the intricate connections between psoriasis and CVD provides a foundation for a holistic approach to patient care. Collaboration between specialties, advancements in screening methodologies, and a nuanced understanding of treatment impacts are essential for comprehensive cardiovascular risk management in individuals with psoriasis.


Psoriasis is a skin condition that not only affects the skin but is also linked to issues in the body's fat tissue, which can lead to inflammation and heart problems. The fat tissue in people with psoriasis contains various immune cells, contributing to obesity and insulin resistance. Research has found a strong connection between inflammation in fat tissues and cardiovascular problems in people with psoriasis. Specific substances released by fat tissue, like leptin, resistin, and adiponectin, can impact inflammation and cardiovascular health. Psoriasis patients often show increased levels of these substances. Treatment for psoriasis may influence cardiovascular health. Some studies suggest that certain medications, like methotrexate or TNF inhibitors, may lower the risk of heart events. However, there are also concerns about potential adverse effects, and further research is needed to fully understand how psoriasis treatments affect cardiovascular outcomes. To manage the cardiovascular risks associated with psoriasis, regular screening for heart-related issues is recommended. Lifestyle changes, such as a healthy diet, stress management, and smoking cessation, are also essential. Additionally, specific medications, like statins and metformin, may be beneficial in controlling cardiovascular risk factors in people with psoriasis. Despite advancements in understanding the relationship between psoriasis and cardiovascular health, there are still challenges. Research is ongoing to develop better screening guidelines and treatment strategies. Collaboration between dermatologists, rheumatologists, and cardiologists is crucial to address the complex nature of this condition and its impact on the heart.


Cardiovascular Diseases , Dermatologic Agents , Heart Disease Risk Factors , Psoriasis , Humans , Psoriasis/drug therapy , Psoriasis/diagnosis , Psoriasis/therapy , Psoriasis/genetics , Psoriasis/physiopathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/physiopathology , Dermatologic Agents/therapeutic use , Dermatologic Agents/adverse effects , Risk Assessment , Treatment Outcome , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/adverse effects , Genetic Predisposition to Disease , Risk Factors , Risk Reduction Behavior
2.
Skin Res Technol ; 30(5): e13702, 2024 May.
Article En | MEDLINE | ID: mdl-38743386

BACKGROUND: Many studies have indicated that negative emotions and personality traits are related to psoriasis, though few have provided causal evidence. METHODS: Our analysis utilized 15 genome-wide association study datasets to identify instrumental variables associated with negative emotions, personality traits and psoriasis vulgaris. Two-sample Mendelian randomization was conducted to identify the causal associations of negative emotions and personality traits with psoriasis vulgaris. To mitigate bias from multiple tests, we adjusted p-values using the Benjamini-Hochberg method. RESULTS: Our study revealed causal links between negative emotions and psoriasis vulgaris, including depressed affect, worry too long, feeling hurt, guilty feelings, mood swings, unenthusiasm, miserableness, fed-up feelings. However, there was no significant evidence of a causal relationship between feeling lonely and psoriasis vulgaris. Additionally, personality traits including neuroticism and openness to experience were found to have causal effects on psoriasis vulgaris. However, no significant evidence supported a causal relationship between agreeableness, conscientiousness, and extraversion with psoriasis vulgaris. CONCLUSION: Our findings suggest that experiencing negative emotions including depressed affect, worrying excessively, feeling hurt, guilty feelings, mood swings, lack of enthusiasm, miserableness and fed-up feelings may pose risks for psoriasis vulgaris. Additionally, neuroticism is associated with a risk of psoriasis vulgaris. Conversely, the openness trait may serve a protective role against psoriasis vulgaris.


Emotions , Genome-Wide Association Study , Mendelian Randomization Analysis , Personality , Psoriasis , Humans , Psoriasis/psychology , Psoriasis/genetics , Polymorphism, Single Nucleotide
3.
Arch Dermatol Res ; 316(5): 162, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734848

Psoriasis is a chronic, immune-mediated, hyperproliferative skin disease. Etiopathogenesis of psoriasis is not well understood. Plexin B2 was found to have effects on CD100-mediated T-cell morphology and expressed in the immune system. It may play a role in the pathogenesis of psoriasis. To assess the tissue level of plexin-B2 and plexin B2 related gene polymorphism which is signal regulatory protein gamma (SIRPγ-rs71212732) in psoriatic patients before and after NB-UVB, acitretin therapy alone or in combination and to detect correlation between level of tissue plexin B2 and disease severity and improvement. This single blinded randomized controlled trial was carried on 50 psoriatic patients and 50 healthy controls. Psoriasis Area and Severity Index score (PASI) was used to evaluate the disease severity. Tissue plexin-b2 level was measured using ELISA and SIRPγ-rs71212732 (T\C) was assessed using TaqMan™ assays and real-time PCR. A significant lower tissue plexin-B2 level was observed in control group (2.9 ± 0.6 pg/g) than cases (25.8 ± 2.8, pg/g) (p < 0.001). Also, a significantly higher tissue plexin-B2 level was observed in sever psoriasis (32.7 ± 3.8 pg/ml) in than moderate psoriasis (13.6 ± 2.1 pg/ml, p = 0.001). Tissue plexin B2 was positively correlated with diseases severity. Significantly higher (TC& TT) genotypes and mutant (C) allele among patients compared to the controls, p < 0.001 for all. Tissue plexin-b2 level was high in psoriasis vulgaris with positive correlation with disease severity and decreased after treatment. This may indicate a role of plexin-b2 in psoriasis vulgaris pathogenesis.


Acitretin , Nerve Tissue Proteins , Psoriasis , Severity of Illness Index , Humans , Psoriasis/genetics , Psoriasis/drug therapy , Psoriasis/diagnosis , Male , Female , Adult , Nerve Tissue Proteins/genetics , Middle Aged , Acitretin/therapeutic use , Acitretin/administration & dosage , Ultraviolet Therapy/methods , Single-Blind Method , Polymorphism, Single Nucleotide , Young Adult , Skin/pathology , Skin/metabolism , Skin/drug effects , Receptors, Immunologic/genetics , Treatment Outcome , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Keratolytic Agents/therapeutic use , Keratolytic Agents/administration & dosage , Combined Modality Therapy
4.
Cell Signal ; 119: 111171, 2024 Jul.
Article En | MEDLINE | ID: mdl-38604345

BACKGROUND: Psoriasis is a chronic, inflammatory skin disease. MicroRNAs (miRNAs) are an abundant class of non-coding RNA molecules. Recent studies have shown that multiple miRNAs are abnormally expressed in patients with psoriasis. The upregulation of miR-374a-5p has been associated with psoriasis severity. However, the specific role of miR-374a-5p in the pathogenesis of psoriasis remain unclear. METHODS: qRT-PCR was employed to validate the expression of miR-374a-5p in psoriatic lesions and in a psoriasis-like cell model constructed using a mixture of M5 (IL-17A, IL-22, OSM, IL-1α, and TNF-α). HaCaT cells were transfected with miR-374a-5p mimic/inhibitor, and assays including EdU, CCK-8, and flow cytometry were conducted to evaluate the effect of miR-374a-5p on cell proliferation. The expression of inflammatory cytokines IL-1ß, IL-6, IL-8, and TNF-α was verified by qRT-PCR. Bioinformatics analysis and dual-luciferase reporter gene assay were performed to detect the downstream target genes and upstream transcription factors of miR-374a-5p, followed by validation of their expression through qRT-PCR and Western blotting. A psoriasis-like mouse model was established using imiquimod cream topical application. The psoriasis area and severity index scoring, hematoxylin-eosin histology staining, and Ki67 immunohistochemistry were employed to validate the effect of miR-374a-5p on the psoriatic inflammation phenotype after intradermal injection of miR-374a-5p agomir/NC. Additionally, the expression of pathway-related molecules and inflammatory factors such as IL-1ß, IL-17a, and TNF-α was verified by immunohistochemistry. RESULTS: Upregulation of miR-374a-5p was observed in psoriatic lesions and the psoriasis-like cell model. In vitro experiments demonstrated that miR-374a-5p not only promoted the proliferation of HaCaT cells but also upregulated the expression of inflammatory cytokines, including IL-1ß, IL-6, IL-8, and TNF-α. Furthermore, miR-374a-5p promoted skin inflammation and epidermal thickening in the Imiquimod-induced psoriasis-like mouse model. Mechanistic studies revealed that miR-374a-5p led to downregulation of WIF1, thereby activating the Wnt5a/NF-κB signaling pathway. The transcription factor p65 encoded by RELA, as a subunit of NF-κB, further upregulated the expression of miR-374a-5p upon activation. This positive feedback loop promoted keratinocyte proliferation and abnormal inflammation, thereby facilitating the development of psoriasis. CONCLUSION: Our findings elucidate the role of miR-374a-5p upregulation in the pathogenesis of psoriasis through inhibition of WIF1 and activation of the Wnt5a/NF-κB pathway, providing new potential therapeutic targets for psoriasis.


Adaptor Proteins, Signal Transducing , MicroRNAs , NF-kappa B , Psoriasis , Wnt-5a Protein , Psoriasis/genetics , Psoriasis/pathology , Psoriasis/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Humans , Wnt-5a Protein/metabolism , Wnt-5a Protein/genetics , NF-kappa B/metabolism , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Up-Regulation , Down-Regulation , Cell Proliferation , Male , HaCaT Cells , Female , Imiquimod , Adult , Repressor Proteins/metabolism , Repressor Proteins/genetics , Middle Aged
5.
Front Public Health ; 12: 1333811, 2024.
Article En | MEDLINE | ID: mdl-38605869

Background: In recent years, an increasing number of observational studies have reported the impact of air pollution on autoimmune diseases (ADs). However, no Mendelian randomization (MR) studies have been conducted to investigate the causal relationships. To enhance our understanding of causality, we examined the causal relationships between particulate matter (PM) and nitrogen oxides (NOx) and ADs. Methods: We utilized genome-wide association study (GWAS) data on PM and NOx from the UK Biobank in European and East Asian populations. We also extracted integrated GWAS data from the Finnish consortium and the Japanese Biobank for two-sample MR analysis. We employed inverse variance weighted (IVW) analysis to assess the causal relationship between PM and NOx exposure and ADs. Additionally, we conducted supplementary analyses using four methods, including IVW (fixed effects), weighted median, weighted mode, and simple mode, to further investigate this relationship. Results: In the European population, the results of MR analysis suggested a statistically significant association between PM2.5 and psoriasis only (OR = 3.86; 95% CI: 1.89-7.88; PIVW < 0.00625), while a potential association exists between PM2.5-10 and vitiligo (OR = 7.42; 95% CI: 1.02-53.94; PIVW < 0.05), as well as between PM2.5 and systemic lupus erythematosus (OR = 68.17; 95% CI: 2.17-2.1e+03; PIVW < 0.05). In East Asian populations, no causal relationship was found between air pollutants and the risk of systemic lupus erythematosus and rheumatoid arthritis (PIVW > 0.025). There was no pleiotropy in the results. Conclusion: Our results suggest a causal association between PM2.5 and psoriasis in European populations. With the help of air pollution prevention and control, the harmful progression of psoriasis may be slowed.


Air Pollution , Autoimmune Diseases , Lupus Erythematosus, Systemic , Psoriasis , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Autoimmune Diseases/etiology , Autoimmune Diseases/genetics , Air Pollution/adverse effects , Particulate Matter/adverse effects , Psoriasis/etiology , Psoriasis/genetics
6.
Front Immunol ; 15: 1304888, 2024.
Article En | MEDLINE | ID: mdl-38605947

Background: Prior research has indicated a link between psoriasis and the susceptibility to breast cancer (BC); however, a definitive causal relationship remains elusive. This study sought to elucidate the causal connection and shared underlying mechanisms between psoriasis and BC through bidirectional Mendelian randomization (MR) and bioinformatic approaches. Methods: We employed a bidirectional MR approach to examine the potential causal connection between psoriasis and BC. Genetic data pertaining to psoriasis and BC were sourced from extensive published genome-wide association studies. The inverse -variance weighted or wald ratio served as the primary method for estimating causal effects. Sensitivity analysis of the MR results was applied with multiple methods. Leveraged datasets from the Gene Expression Omnibus and the Cancer Genome Atlas repositories to identify common differentially expressed genes, shedding light on the shared mechanisms underlying these two conditions. Results: The MR analysis revealed that when considering psoriasis as an exposure factor, the incidences of BC (OR=1.027) and estrogen receptor negative (ER-) BC (OR=1.054) were higher than in the general population. When using Her2+ BC as an exposure factor, the risk of psoriasis was 0.822 times higher (OR=0.822) than in the general population. Sensitivity analysis indicated that the results were robust. Transcriptome analysis showed that CXCL13 and CCL20 were activated in both BC and psoriasis. Both diseases were also linked to neutrophil chemotaxis, the IL-17 pathway, and the chemokine pathway. Conclusion: The results suggest that psoriasis may increase the risk of BC, especially ER- BC, while reverse MR suggests a decreased risk of psoriasis in Her2+ BC. Transcriptome analysis revealed a shared mechanism between psoriasis and BC.


Breast Neoplasms , Psoriasis , Humans , Female , Breast Neoplasms/genetics , Genome-Wide Association Study , Causality , Computational Biology , Mendelian Randomization Analysis , Psoriasis/genetics
7.
Drug Des Devel Ther ; 18: 1277-1296, 2024.
Article En | MEDLINE | ID: mdl-38681207

Psoriasis presents as a complex genetic skin disorder, characterized by the interaction between infiltrated immune cells and keratinocytes. Substantial progress has been made in understanding the molecular mechanisms of both coding and non-coding genes, which has positively impacted clinical treatment approaches. Despite extensive research into the genetic aspects of psoriasis pathogenesis, fully grasping its epigenetic component remains a challenging endeavor. In response to the pressing demand for innovative treatments to alleviate inflammatory skin disorders, various novel strategies are under consideration. These include gene therapy employing antisense nucleotides, silencing RNA complexes, stem cell therapy, and antibody-based therapy. There is a pressing requirement for a psoriasis-like animal model that replicates human psoriasis to facilitate early preclinical evaluations of these novel treatments. The authors conduct a comprehensive review of various gene therapy in different psoriasis-like animal models utilized in psoriasis research. The animals included in the list underwent skin treatments such as imiquimod application, as well as genetic and biologic injections, and the results of these interventions are detailed. Animal models play a crucial role in translating drug discoveries from the laboratory to clinical practice, and these models aid in improving the reproducibility and clinical applicability of preclinical data. Numerous animal models with characteristics similar to those of human psoriasis have proven to be useful in understanding the development of psoriasis. In this review, the article focuses on RNA-based gene therapy exploration in different types of psoriasis-like animal models to improve the treatment of psoriasis.


Disease Models, Animal , Genetic Therapy , Psoriasis , Psoriasis/therapy , Psoriasis/genetics , Psoriasis/immunology , Animals , Humans , RNA/genetics
8.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612637

Psoriasis is a chronic inflammatory skin disease, the prevalence of which is increasing. Genetic, genomic, and epigenetic changes play a significant role in the pathogenesis of psoriasis. This review summarizes the impact of epigenetics on the development of psoriasis and highlights challenges for the future. The development of epigenetics provides a basis for the search for genetic markers associated with the major histocompatibility complex. Genome-wide association studies have made it possible to link psoriasis to genes and therefore to epigenetics. The acquired knowledge may in the future serve as a solid foundation for developing newer, increasingly effective methods of treating psoriasis. In this narrative review, we discuss the role of epigenetic factors in the pathogenesis of psoriasis.


Genome-Wide Association Study , Psoriasis , Humans , Psoriasis/genetics , Epigenomics , Skin , Epigenesis, Genetic
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 337-345, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645867

Objective: To screen for the key characteristic genes of the psoriasis vulgaris (PV) patients with different Traditional Chinese Medicine (TCM) syndromes, including blood-heat syndrome (BHS), blood stasis syndrome (BSS), and blood-dryness syndrome (BDS), through bioinformatics and machine learning and to provide a scientific basis for the clinical diagnosis and treatment of PV of different TCM syndrome types. Methods: The GSE192867 dataset was downloaded from Gene Expression Omnibus (GEO). The limma package was used to screen for the differentially expressed genes (DEGs) of PV, BHS, BSS, and BDS in PV patients and healthy populations. In addition, KEGG (Kyoto Encyclopedia of Genes and Genes) pathway enrichment analysis was performed. The DEGs associated with PV, BHS, BSS, and BDS were identified in the screening and were intersected separately to obtain differentially characterized genes. Out of two algorithms, the support vector machine (SVM) and random forest (RF), the one that produced the optimal performance was used to analyze the characteristic genes and the top 5 genes were identified as the key characteristic genes. The receiver operating characteristic (ROC) curves of the key characteristic genes were plotted by using the pROC package, the area under curve (AUC) was calculated, and the diagnostic performance was evaluated, accordingly. Results: The numbers of DEGs associated with PV, BHS, BSS, and BDS were 7699, 7291, 7654, and 6578, respectively. KEGG enrichment analysis was focused on Janus kinase (JAK)/signal transducer and activator of transcription (STAT), cyclic adenosine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), apoptosis, and other pathways. A total of 13 key characteristic genes were identified in the screening by machine learning. Among the 13 key characteristic genes, malectin (MLEC), TUB like protein 3 (TULP3), SET domain containing 9 (SETD9), nuclear envelope integral membrane protein 2 (NEMP2), and BTG anti-proliferation factor 3 (BTG3) were the key characteristic genes of BHS; phosphatase 15 (DUSP15), C1q and tumor necrosis factor related protein 7 (C1QTNF7), solute carrier family 12 member 5 (SLC12A5), tripartite motif containing 63 (TRIM63), and ubiquitin associated protein 1 like (UBAP1L) were the key characteristic genes of BSS; recombinant mouse protein (RRNAD1), GTPase-activating protein ASAP3 Protein (ASAP3), and human myomesin 2 (MYOM2) were the key characteristic genes of BDS. Moreover, all of them showed high diagnostic efficacy. Conclusion: There are significant differences in the characteristic genes of different PV syndromes and they may be potential biomarkers for diagnosing TCM syndromes of PV.


Computational Biology , Machine Learning , Medicine, Chinese Traditional , Psoriasis , Humans , Psoriasis/genetics , Psoriasis/diagnosis , Medicine, Chinese Traditional/methods , Computational Biology/methods , Gene Expression Profiling/methods , Support Vector Machine , Algorithms
10.
Front Immunol ; 15: 1326717, 2024.
Article En | MEDLINE | ID: mdl-38558803

Background: A growing body of evidence has shown that immune cells are linked to psoriasis. It is, however, still unclear if these associations reflect a relationship of cause and effect. Objective: We employed a two-sample Mendelian randomization (MR)-based study to elucidate the probable causative connection between immune cells and psoriasis. Methods: Summary information for psoriasis (Ncase = 5,427, Ncontrol = 479,171) was obtained from the European Bioinformatics Institute. Summarized statistical information on 731 immune cell features, including morphological parameters (MP; n = 32), relative cell number (n = 192), median fluorescence intensity (MFI) of surface antigens (n = 389), and absolute cell number (n = 118), was obtained from the genome-wide association studies (GWAS) catalog. The research consisted of forward MR analysis, in which immune cell traits were used as the exposure factor, and psoriasis was the outcome, as well as reverse MR analysis, in which psoriasis was used as the exposure factor, and immune cell traits were the outcome. We ran numerous sensitivity analyses to ascertain the study results for robustness, heterogeneity, and potential multiple-biological effects. Result: This research determined a probable causative connection between immune cells and psoriasis. In particular, we identified 36 distinct types of immune cells that are potentially causally linked to psoriasis. Conclusion: Our findings indicate strong causal correlations between 36 immunological phenotypes and psoriasis, thus, directing future clinical trials.


Mendelian Randomization Analysis , Psoriasis , Humans , Genome-Wide Association Study , Cell Count , Antigens, Surface , Psoriasis/genetics
11.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 85-89, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678624

We aimed to explore the effects of silencing NOD-like receptor protein 3 (NLRP3) on proliferation of psoriasis-like HaCaT cells and expressions of cytokines. HaCaT cells were treated with human keratinocyte growth factor (KGF) and were divided into KGF group, negative control group, NLRP3-RNAi group and control group. Cells proliferation was detected by CCK8, cell clone formation rate was detected by clone formation assay, distribution of cells cycle was detected by flow cytometry, expressions of cyclin B1 (Cyclin B1), cyclin-dependent kinase 2 (CDK2), Ki67 and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot, and levels of interleukin (IL)-17, IL-23, IL-6 and tumor necrosis factor α (TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were increased in KGF group, percentage of cells in G0/G1 phase was decreased, percentage of cells in S phase was increased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were increased, and levels of IL-17, IL-23, IL-6 and TNF-α were increased. Compared with negative control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were decreased in NLRP3-RNAi group, percentage of cells in G0/G1 phase was increased, percentage of cells in S phase was decreased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were decreased, and levels of IL-17, IL-23, IL-6 and TNF-α were decreased. Silencing NLRP3 gene can inhibit the proliferation of psoriasis-like HaCaT cells, arrest cell cycle, inhibit the expressions of cell proliferation-related proteins and reduce levels of pro-inflammatory factors.


Cell Proliferation , Cytokines , NLR Family, Pyrin Domain-Containing 3 Protein , Proliferating Cell Nuclear Antigen , Psoriasis , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Cell Proliferation/genetics , Psoriasis/genetics , Psoriasis/metabolism , Psoriasis/pathology , Cytokines/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Proliferating Cell Nuclear Antigen/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Cyclin B1/metabolism , Cyclin B1/genetics , Gene Silencing , Ki-67 Antigen/metabolism , Ki-67 Antigen/genetics , HaCaT Cells , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Cell Cycle/genetics , Interleukin-17/metabolism , Interleukin-17/genetics , RNA Interference , Interleukin-23/metabolism , Interleukin-23/genetics , Interleukin-6/metabolism , Interleukin-6/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
12.
Int J Mol Sci ; 25(8)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38674130

IQGAP3 (IQ Motif Containing GTPase Activating Protein 3) is member of the IQGAP family of scaffold proteins, which are essential for assembling multiprotein complexes that coordinate various intracellular signaling pathways. Previous research has shown that IQGAP3 is overexpressed in psoriatic skin lesions. Given its involvement in processes like cell proliferation and chemokine signaling, we sought to explore its molecular role in driving the psoriatic phenotype of keratinocytes. By conducting transcriptome profiling of HaCaT keratinocytes, we identified numerous psoriasis-associated pathways that were affected when IQGAP3 was knocked down. These included alterations in NFkB signaling, EGFR signaling, activation of p38/MAPK and ERK1/ERK2, lipid metabolism, cytokine production, and the response to inflammatory cytokine stimulation. Real-time analysis further revealed changes in cell growth dynamics, including proliferation and wound healing. The balance between cell proliferation and apoptosis was altered, as were skin barrier functions and the production of IL-6 and IFNγ. Despite these significant findings, the diversity of the alterations observed in the knockdown cells led us to conclude that IQGAP3 may not be the best target for the therapeutic inhibition to normalize the phenotype of keratinocytes in psoriasis.


Cell Proliferation , GTPase-Activating Proteins , Keratinocytes , Psoriasis , Humans , Keratinocytes/metabolism , Keratinocytes/pathology , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/genetics , ras GTPase-Activating Proteins/metabolism , ras GTPase-Activating Proteins/genetics , Signal Transduction , HaCaT Cells , Cytokines/metabolism , Apoptosis , Skin/metabolism , Skin/pathology , Cell Line , Gene Expression Profiling
13.
Genes (Basel) ; 15(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38674328

Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.


Signal Transduction , Humans , Signal Transduction/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Oligonucleotide Array Sequence Analysis/methods , Gene Regulatory Networks , Immune System/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Psoriasis/genetics , Psoriasis/drug therapy , Psoriasis/immunology , Gene Expression Profiling/methods
14.
Front Immunol ; 15: 1337799, 2024.
Article En | MEDLINE | ID: mdl-38571950

Generalized Pustular Psoriasis (GPP) is a dermatological autoinflammatory disease that rarely occurs in children and is associated with complex genetic factors. GPP pathogenesis has been associated with mutations in IL36RN gene, which encodes an interleukin-36 receptor antagonist. GPP usually occurs without a history of psoriasis in the patients or their family members. This case report describes the clinical course of a 3-year-old toddler with GPP. The diagnosis of GPP was confirmed through a comprehensive series of examinations, and genetic testing revealed an IL36RN mutation, providing further insight into the genetic basis of the condition. This case highlights the importance of a genetic perspective for diagnosing GPP, particularly in children.


Psoriasis , Skin Diseases, Vesiculobullous , Humans , Child, Preschool , Interleukins/genetics , Psoriasis/diagnosis , Psoriasis/genetics , Psoriasis/pathology , Mutation , Genetic Testing , Acute Disease , Chronic Disease , Skin Diseases, Vesiculobullous/genetics
15.
In Vivo ; 38(3): 1000-1008, 2024.
Article En | MEDLINE | ID: mdl-38688625

Psoriasis continues to affect a large percentage of patients worldwide and strongly appears to be a systematic disease. Efforts are being made to understand its etiology, which have led to research extended to genomic analysis with a focus on the role of pro-inflammatory cytokines, which play a major role in the pathogenesis of the disease. Plasma proteomic analysis in various diseases has provided promising results for choosing the right treatment for psoriasis, suggesting that it could play a key role in the prevention, prognosis, and treatment of the disease by individualizing treatment choices based on the proteomic profile of each patient. In this review, we focus on existing data in the bibliography on proteomic analysis in psoriasis and relevant approaches to future targeted therapies.


Biomarkers , Proteomics , Psoriasis , Humans , Psoriasis/metabolism , Psoriasis/blood , Psoriasis/genetics , Proteomics/methods , Proteome/metabolism , Cytokines/metabolism , Cytokines/blood , Prognosis
16.
Int Immunopharmacol ; 132: 111993, 2024 May 10.
Article En | MEDLINE | ID: mdl-38565044

OBJECTIVE: Psoriasis is an immune-mediated skin disease where the IL-17 signaling pathway plays a crucial role in its development. Chronic circadian rhythm disorder in psoriasis pathogenesis is gaining more attention. The relationship between IL and 17 signaling pathway and skin clock genes remains poorly understood. METHODS: GSE121212 with psoriatic lesion and healthy controls was used as the exploration cohort for searching analysis. Datasets GSE54456, GSE13355, GSE14905, GSE117239, GSE51440, and GSE137218 were applied to validation analysis. Single-cell RNA sequencing (scRNA-seq) dataset GSE173706 was used to explore the F3 expression and related pathway activities in single-cell levels. Through intersecting with high-expression DEGs, F3 was selected as the signature skin circadian gene in psoriasis for further investigation. Functional analyses, including correlation analyses, prediction of transcription factors, protein-protein interaction, and single gene GSEA to explore the potential roles of F3. ssGSEA algorithm was performed to uncover the immune-related characteristics of psoriasis. We further explored F3 expression in the specific cell population in scRNA-seq dataset, besides this, AUCell analysis was performed to explore the pathway activities and the results were further compared between the specific cell cluster. Immunohistochemistry experiment, RT-qPCR was used to validate the location and expression of F3, small interfering RNA (siRNA) transfection experiment in HaCaT, and transcriptome sequencing analysis were applied to explore the potential function of F3. RESULTS: F3 was significantly down-regulated in psoriasis and interacted with IL-17 signaling pathway. Low expression of F3 could upregulate the receptor of JAK-STAT signaling, thereby promoting keratinocyte inflammation. CONCLUSION: Our research revealed a bidirectional link between the skin circadian gene F3 and the IL-17 signaling pathway in psoriasis, suggesting that F3 may interact with the IL-17 pathway by activating JAK-STAT within keratinocytes and inducing abnormal intracellular inflammation.


Interleukin-17 , Keratinocytes , Psoriasis , Signal Transduction , Skin , Psoriasis/genetics , Psoriasis/immunology , Humans , Interleukin-17/metabolism , Interleukin-17/genetics , Keratinocytes/metabolism , Keratinocytes/immunology , Skin/pathology , Skin/immunology , Skin/metabolism , Circadian Clocks/genetics , Biomarkers/metabolism , Severity of Illness Index , HaCaT Cells
18.
Mol Ther ; 32(5): 1561-1577, 2024 May 01.
Article En | MEDLINE | ID: mdl-38454607

Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.


Disease Models, Animal , Interleukin-23 , Psoriasis , Signal Transduction , Psoriasis/metabolism , Psoriasis/pathology , Psoriasis/therapy , Psoriasis/etiology , Psoriasis/immunology , Psoriasis/genetics , Psoriasis/chemically induced , Animals , Mice , Interleukin-23/metabolism , Interleukin-23/genetics , Humans , Inflammation/metabolism , Inflammation/pathology , Mice, Knockout , Skin/pathology , Skin/metabolism , NF-kappaB-Inducing Kinase , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , NF-kappa B/metabolism
19.
PLoS One ; 19(3): e0298443, 2024.
Article En | MEDLINE | ID: mdl-38512926

BACKGROUND: Increasing evidence suggests that alterations in gut microbiota are associated with a variety of skin diseases. However, whether this association reflects a causal relationship remains unknown. We aimed to reveal the causal relationship between gut microbiota and skin diseases, including psoriasis, atopic dermatitis, acne, and lichen planus. METHODS: We obtained full genetic association summary data for gut microbiota, psoriasis, atopic dermatitis, acne, and lichen planus from public databases and used three methods, mainly inverse variance weighting, to analyze the causal relationships between gut microbiota and these skin diseases using bidirectional Mendelian randomization, as well as sensitivity and stability analysis of the results using multiple methods. RESULTS: The results showed that there were five associated genera in the psoriasis group, seven associated genera were obtained in the atopic dermatitis group, a total of ten associated genera in the acne group, and four associated genera in the lichen planus group. The results corrected for false discovery rate showed that Eubacteriumfissicatenagroup (P = 2.20E-04, OR = 1.24, 95%CI:1.11-1.40) and psoriasis still showed a causal relationship. In contrast, in the reverse Mendelian randomization results, there was no evidence of an association between these skin diseases and gut microbiota. CONCLUSION: We demonstrated a causal relationship between gut microbiota and immune skin diseases and provide a new therapeutic perspective for the study of immune diseases: targeted modulation of dysregulation of specific bacterial taxa to prevent and treat psoriasis, atopic dermatitis, acne, and lichen planus.


Acne Vulgaris , Dermatitis, Atopic , Gastrointestinal Microbiome , Lichen Planus , Psoriasis , Skin Diseases , Humans , Dermatitis, Atopic/genetics , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Skin Diseases/genetics , Psoriasis/genetics , Genome-Wide Association Study
20.
Genes (Basel) ; 15(3)2024 Mar 17.
Article En | MEDLINE | ID: mdl-38540428

Moderate-to-severe psoriasis (Ps) treatment includes systemic drugs and biological agents. Apremilast, a small molecule primarily metabolized by cytochrome CYP3A4, modulates the immune system by specifically inhibiting phosphodiesterase type 4 (PDE4) isoforms and is currently used for the treatment of Ps and psoriatic arthritis (PsA). Clinical trials and real-world data showed variable efficacy in response among Ps patients underlying the need for personalized therapy. This study implements a candidate-gene and a network-based approach to identify genetic markers associated with apremilast response in forty-nine Greek Ps patients. Our data revealed an association of sixty-four SNPs within or near PDE4 and CYP3A4 genes, four SNPs in ncRNAs ANRIL, LINC00941 and miR4706, which influence the abundance or function of PDE4s, and thirty-three SNPs within fourteen genes whose protein products either interact directly with PDE4 proteins or constitute components of the cAMP signaling pathway which is modulated by PDE4s. Notably, fifty-six of the aforementioned SNPs constitute eQTLs for the respective genes in relevant to psoriasis tissues/cells implying that these variants could be causal. Our analysis provides a number of novel genetic variants that, upon validation in larger cohorts, could be utilized as predictive markers regarding the response of Ps patients to apremilast treatment.


Arthritis, Psoriatic , Psoriasis , Thalidomide/analogs & derivatives , Humans , Arthritis, Psoriatic/chemically induced , Arthritis, Psoriatic/drug therapy , Cytochrome P-450 CYP3A , Psoriasis/drug therapy , Psoriasis/genetics , Thalidomide/therapeutic use , Thalidomide/adverse effects
...